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Abstract—We study the dynamics of a lumped mass linear oscillator that is damped through the
use of a material with memory in which the internal dissipative forces depend not only on current
but also on previous deformations. This effective memory is governed by two parameters: the
relaxation modulus (. and relaxation time 7, which also govern the vibration-damping properties
of the material. Conditions for optimal damping in the unforced case corresponding to critical
damping of a linear oscillator with viscous damping are derived, and the response of the oscillator
in the case of sinusoidal excitation 1s studied. When the relaxation time is small the history type
damping is modeled approximately by the action of a classical viscous damper with small viscosity.
However, when the relaxation time is sufficiently large, this damping mechanism adds to the system
a new higher resonance frequency that depends on G, and ;. Since the oscillator is active over a
wide range of frequencies, it has potential applications to the development of adaptive damping
devices. | 1997 Elsevier Science Ltd.

1. INTRODUCTION

Viscoelastic materials are widely used as elements in mechanisms of vibration control most
importantly due to their damping effects. Such applications are found, for example, in
vibration-damping of flexible structures such as beams. plates, shells etc., where the vis-
coelastic material is made to vibrate with the structural member for example in the form of
a layer attached to a beam or a plate. The use of such layers in the control of vibrations of
spherical shells, cylindrical shells, etc. has been studied by several authors, e.g. Okazaki er
al. (1990), Gautham ef al. (1994), Culkowski et al. (1971). The case of nonlinear radial
vibrations of a viscoelastic spherical shell capable of undergoing a phase transformation is
studied by Fosdick er al. (1997); here the elastic contribution is characterized by a non-
convex strain energy function.

A simpler but more wide-spread use of the effects of viscosity is found in viscous
dampers. These are important components of many mechanical applications where
vibrations need to be damped, isolated or controlled in some other manner. The intrinsic
mechanism of damping in such “dashpot™ devices is the action of a velocity dependent
force that is invariably in a direction opposing the velocity of the vibrating mass, and to
first order proportional to the magnitude of the velocity.

An alternative way of characterizing this force, that has the advantage of being
generalized to a larger class of dissipative phenomena, is that it is only indirectly dependent
on the velocity ; its direct dependence being on the position that the object occupied (in
relation to its present position), a period of time Az before the current time. These types of
history dependent dissipative forces are supplied by materials such as gum rubber and high
polymer solutions for which the stresses in the material depend on past as well as present
states of deformation. Such materials are termed historv type materials, or materials with
memory (see, e.g., Truesdell and Noll (1963)). If, in addition, the relative deformation of
the recent past is more important in determining the force than that further back in time,
the material is said to have *‘fading memory”. A rigorous treatise on the thermodynamics
of such materials has been given by Coleman (1964).
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The history type modeling of viscoelastic materials was first proposed early on by
Boltzmann in 1874. In the simplest situation, the dissipative nature of materials with
memory is characterized by two material parameters : a relaxation time y, which determines
the rate at which the influence of past states of strain on present stress diminishes with
elasped time, and a relaxation modulus G,, which determines the overall strength of the
history dependence of the stress. More generally, history type materials may exhibit a
spectrum of relaxation times, all influencing the behavior of the material simultaneously,
and, depending on material symmetry, a number of independent relaxation moduli, but for
simplicity, we shall only consider one dimensional motions and a single relaxation modulus.
In some cases, the parameters y and G, themselves may be sensitive to outside effects
such as temperature or electric field in electro-rheological materials, and this suggests the
possibility of tuning them to desired values in a specific application or using them as
interactive modulating devices.

The aim of this paper is to investigate the possible use of viscoelastic materials with
memory in the practical context of the damping of oscillators and to compare this type of
damping to the conventional type of viscous damping. We study the interplay of the
relaxation modulus and the relaxation time in determining the nature of the damping in
both the cases of forced and free oscillations. Of close relevance to this work is a study of
the stability and nonlinear oscillations of cylindrical and spherical viscoelastic shells by
Fosdick and Yu (1996).

We begin in Section 2 by introducing a model of the oscillator we wish to consider.
We give a brief summary of some of the main elements and assumptions from continuum
mechanics on which the remainder of our work is based and we obtain the governing
equations of motion for the oscillator. It is shown how these may be expressed as three first
order nonlinear ordinary differential equations.

A linearized version of the governing equations is given in Section 3. It is shown that
the same linear dynamical system may be obtained through the use of a discrete mechanical
model for the viscoelastic material. A study of the linear system shows that the history
dependence leads to important qualitative differences from the case of classical viscous
damping. For example, we show that the resonance frequency can be significantly altered
by changing the relaxation time of the material.

In Section 4, we consider the limiting cases of “small” and ““large™ relaxation times.
In each of these cases the governing differential equations may be approximated by second
order systems. In the first case, the memory of the material is so short that it is adequately
described by the action of a classical viscosity. In the second case the material has long
memory and it behaves as if it was purely elastic.

2. CONSTITUTIVE MODEL AND DYNAMICAL EQUATIONS

In the main body of this work we shall study the motion of a one degree of freedom
oscillator with a lumped mass » which is subject to a force p(¢) and a restoring force due
to the action of a viscoelastic material with memory. Eventually, we assume that the motion
and all forces are uniaxial, as indicated in Fig. 1, and we shall suppose that the viscoelastic
damper has a relatively small mass when compared to m.

X

—

-

viscoelastic material
p(1)

Fig. 1. Schematic diagram of a linear oscillator with history type force.
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When a solid viscoelastic body is subject to a deformation history, it is common to
assume that the Cauchy stress T at each particle X of the body and at the current time ¢ is
determined by the history of the deformation gradient for that particle. If we let x = % (X, 1)
denote the motion of the body then the deformation gradient history is given by
F(X,t—s5) = Vy(X, t—5)Vs = 0. The class of isotropic materials known as finite-linear vis-
coelastic solids (see, e.g., Coleman and Noll (1961)), is characterized by the constitutive
assumption

T(X, ) = T“(F(X, ) + J (AFX, 1), )1rd (X, 1— )+ 2u(F (X, 1), )3, (X, 1—5)} ds, (1)

0

where the elastic part T¢(-) and the relaxation-like scalar functions (-, s) and u(-,s) are
isotropic functions of the left Cauchy—Green strain tensor B = FFT, and where

JX, 1) =C(X, 1)1, 2

with the relative right Cauchy—Green strain tensor C,(X, 1) computed according to

C,(X,7) = F (X, )FT(X. OF (X, )F "' (X, 1). 3)

The main features of this constitutive theory are that it is a possible exact theory of material
behavior, and the presence of the deformation gradient history is included in an isotropic
linear history functional through a properly invariant nonlinear measure of strain history,
ie., J(X,1—s)forall s = 0. The constitutive assumption (1), as it stands, is highly nonlinear
and it has classical linear viscoelasticity as its first order approximation (see, e.g., Coleman
and Noll (1961)).

In order to reduce (1) to a more tractable theory, we shall assume that the relaxation
functions A(F, s) and pu(F, s) are independent of F. Moreover, in the one-dimensional setting
suggested by Fig. 1, we take the motion of the viscoelastic body to be described by the
scalar equation x = (X, 7), and by analogy to (1) we assume that the axial force f(X, ) on
X at time ¢ is given by

x

AX, 1) = f(FX, I))+J o), (X, 1—~5)ds. @

0
Here, F(X, 1) = éy(X, 1)/¢X, and from (2) and (3) we have

Sty < XL [P 0P )
(F(X, )

In addition, we shall introduce the simple relaxation function

G(s) = Goe ™™, (6)

where G, > 0 and » > 0, and take



406 R. Fosdick et al.
@(s) = G(s) (7

in (4).F

The engineering stress (Piola-Kirchhoff) is given by f(X, 1)/ 4,, where A4, is the (con-
stant) referential cross section area of the bar. Thus, the balance of momentum for the bar
is given by

1 ¢f(X, t)
1, ox = poX(X. 1), (8)

where p, is the constant reference mass density. If we let L, denote the referential length of
the viscoelastic bar, then the dvnamical equation for the mass s is

my (Lo, 1) = p(t) —f(Ly, 1), %)
and the governing system of dynamical equations is complicated by the partial differential
character of (8). However, in the limiting case when the inertia of the bar can be neglected,
it is clear that (8) requires only that the axial force f(X,t) be independent of X. If we

suppose that the deformation of the bar is homogeneous, which seems reasonable if £¢(-) is
monotone increasing, so that

= (X, 1) = X3(1), (10)
then F(X, 1) = X(t) and (5), (6), and (7) show that (X, r) = f(r), where

A1) = Fx(0)+ J i)™ ‘"\‘)(") AUy (11)

Then, the single dynamical equation for determining the motion of the mass m is

’”L(V;é([) = p(t) =), (12)

which, by (11), is a nonlinear integral-differential equation for determining %(:). If we
consider a special forcing function p(z) = PcosQq, then by (6), (11), and (12) we find that

mLyX(1) = —f (1) + Ef_o r e FU=9—-%(0)

: ds+ Pcos Qr. (13)
7 JU X (l)

Here, it is convenient to rewrite this as a system of first order ordinary differential
equations by defining the auxiliary function

+In a one-dimensional relaxation experiment, an undistorted and unloaded filament is subjected to a homo-
geneous step extensional strain ¢ at time # = 0 and thereafter held fixed. There is an observed corresponding initial
axial force which decays asymptotically to a constant lower value for long time. Using the model of (4)-(7), and
the common identification ¢ = F— 1, we readily find that the force is homogeneous (i.e.. independent of X) and
decays according to

(1+e)’—1 _, .
LR T

HO =T+ +G, -
(1+¢)”

Thus, the long-time (i.e..  — o) and initial (i.e.. 7 = 0) force-strain responses are elastic and in general nonlinear
functions of strain. The effect of the viscoelastic relaxation for this model is exhibited in the second term above,
which contains a single relaxation time constant y and which depends explicitly upon the strain. While there are
materials which exhibit this general behavior, single relaxation times are not expected to completely model the
detailed relaxation response. Our aim in this work is to use this model solely to illustrate certain phenomenological
possibilities associated with nonlinearities and relaxation.
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) = JX e :_\fm(ti__'x’_“([_).ds. (14)
0 (0

?

uTs

Then, it readily follows that (13) has the equivalent form

X(1) = 9j(1),

mLi(t) = — (%)) + ‘ﬂ Z) + Peos Qu,

/

Sy = —| L 20, 200
lo = h*f@}m’fm' (15)

Clearly. an equilibrium point (3%, 7*,2%) for (15) (when P =0) is given by
(%.7,0) =(£*,0,0), where £* is any root of the equation f(¥*) = 0. In what follow we
assume X* = 1, i.e., the motion takes place about the undistorted state.

3. THE LINEAR SYSTEM

We consider, now, those motions that are sufficiently well described by a linearized
form of (15). To this end, and noting that such will occur in the vicinity of the equilibrium
points, we let £(¢) be such that

X(1) = 3*+4(0) (16)

and observe that the linearized form of (15) is

& = i,
: s Gy~
mlLoy = —k&(H) + 75(:)+Pcosm,
z 1~ \ i
i = -;g(t)*?fﬁ(t)., (17)
where
_9
k= df(x ) > 0. (18)

We now introduce a dimensionless time variable t according to
T = wyl, (19)

where w, = \/k/mL(. is chosen to be the frequency of natural vibrations that would occur
if Go = 0 and P = 0. Introduce
(i>. (20)
Wy

_ T N
() =¢ (&;)»MT) = o gl (w0>,s(T) =

2 | —
vy
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Then, (17) may be written in the form

dé(r) _
e - n(z).
dn
%(,:-)= —&(0)+ DL (r)+pcoswr,
di(r) ] \
DA & S S 5
dr V(l)og(') 2n(7). (ﬁl)
where
G,
Tk 2
=" (22)
and
P, 0 .
p_k,sw— (1)0. (4)

3.1. Discrete mechanical model for the linear viscoelastic oscillator

It is common to study the dynamical behavior of viscoelastic materials by introducing
discrete mechanical spring and dashpot models. Consider, for example, the three-element
model of Fig. 2, in which &, and k, are the linear spring constants and y is the “viscosity”
of the dashpot. The natural lengths of the springs are /, and /;, respectively. Let x,(¢) and
x(¢) denote the positions at time ¢ as shown in Fig. 2. Then, the restoring force on mass M
is

F(t) = ko(x(t) ~x, () = Ly) = ki (x1 (D) — 1)+ ux, (D). (24)

Clearly, then, we have

ki +k k koly —k,l
B0+ 2R ) = D -y, = (25)
K Hu ko
which, after integration, yields
kO o ky+ky), , -
x, (1) = 7;7 e IRtk (x (7 —5) — 1) ds. (26)
0

x (1)

Fig. 2. Discrete mechanical model for the linear viscoelastic oscillator.
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Thus, for the total force we have
k(z) . = [k +ky)i 4
F(f) = ko(x(t) —1,)— " e MR Tkl (v(f—5)— ) ds, 27
0
which has the equivalent form
ki +kqy 0

kl =«
H0=—E&Lu0%4w40—jﬁ~e“h”W“uU—ﬂ—ﬂﬂﬂu (28)

Now, the dynamical equation of free motion for M is given by the integro-differential
equation — F(7) = MX(r), which, with the definition

() = Jx e~ Wi Hkods (xit — ) — x(£)) ds, (29)

0

may be written as the system

x(1) = y(1),
ok R
My(t) = - k, +k0(3((t)- lo—1)+ r z(f)
iy Katke o w
2t = p z(1) K +k0'l’(t)' (30)

A comparison of (30) and (17) (with P = 0) show that these two systems are equivalent if
the following identifications are made:

L
Cokitky
0 = x() =11y,
(1) = »(0),
{0 =220,
mly = M,
kok,
k=——m
kC\ + kl ’
2G, ki
2= (31)
7 H
3.2. The unforced case
In the case when p = 0 the linear system (21) may be written in the matrix form
dy(r)
—— = A 32
5= A, (32)
where
x(1) =(&n.0)(1) (33)

and
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0 1 0
A= -1 0 D, |, (34)
0 -2 -—x

and where we have introduced the parameter
K=—>0. (33)

The characteristic polynomial for A is

2RI+ (20, + DAtk =0, (36)
which has three roots, one of which is real. The other two roots, depending on the sign of
the discriminant D (see the definition below), may be complex conjugate (D > 0), real and

equal (D = 0), or real and distinct (D < 0). Nevertheless, all three roots have negative real
parts. To see this, first note that the characteristic polynomial of (36) can be rewritten as

A4 +QR0,+ D4k =G —A(A=2)(A—4y), (37)
where 4, i = 1, 2, 3, are the roots of (36). Thus,

/’:zl +),2 '+;.3 = —K,
/:|/sz +/‘.\,1/:,3 —‘}—/:‘.2/:3 = 2(D(]+1,
/:\,111.2/‘.3 = —K. (38)
Suppose that 2, is real and that /, and £, are either real or complex conjugate. Then (38);
requires that 4,4,/; < 0 and so at least one real root must be negative regardless of whether

all are real or not. We may then assume that 4, < 0 and /.4; > 0 without loss or generality.
From (38), we readily see that

Arsy =200+ 1—71(4; +43)
and with (38); we find
Mirds = 2RO+ 1—7(A,+23)] = — k. (39)
Finally, eliminating x between (38), and (39), we find

- A 2@0/11
Ayt Ay = T <0,
1477

which implies that Re(4,) = Re(4;) < 0if 4, and 1, are complex conjugate, and with 4,4, > 0
we see that 2, < 0 and A; < 0 if 2, and /; are real.
Defining two auxiliary quantities Q and R according to

B 3(2®0+1)~;§

10
9 (40)

and
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T T T T T T

1 Il 1 1 1 1

o

0 1 2 3 4 5 6 7 8 9 10 P
Fig. 3. Contour lines for the discriminant D.
Ok (2D, + 1) — 27K —2K?}
R= ) 41
54 i (40
we have for the discriminant D
D=0 +R®. (42)

Figure 3 shows how D depends on k and ®,.
An eigenvector of A corresponding to the eigenvalue 4, is easily shown to have the form

1
A
v, = : (43)
41

s
If one assumes that D > 0 or D < 0. so that A has three distinct eigenvalues, then there is
a coordinate transformation which diagonalizes A. This transformation is affected by a

matrix S whose columns are the eigenvectors of A, i.e.,

1 1 1

A As /a
S=| ﬁ (44)
AT+ f',§+1 Ai+1
@, [OR (ON
Denoting the new coordinates by % (1) = (&, 7, {)(t) we have
x(1) = S¥(7) (45)

and
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E%(Ti) = Ay (7). (46)
where
/0
A=S"T"AS=[0 /i, 0| (47)
0 0 2

The general solution of (46) may be written in the form

(1) =M% (48)
where
e 0 0
M= 0 e 0| (49)
0 0 ehr

and % = (o, flo» o) = %(0). The three components of (t) are therefore completely deco-
upled. Transforming back to the original coordinates we have

2(1) =8e*S 'y, (50)

where y, = %(0). In the case that D > 0, i.e., when /, is real and A, and 4, are complex
conjugates, the general solution behaves like an underdamped oscillator, as illustrated in
Fig. 4. We interpret this solution as a decaying oscillation due to 4, and A, superposed with

77 0.15 T T T T T T ,,I a.1
o1l 008
- (a) underdamped: (b) overdamped:
0061
0.05} k=1 % =1 k=9 $=9
0041
T 0.021
-0.05 oL
/ -0.02
0.1t
—o0dd
1563 0 o0z 004 o006 008 X 012 014 0 o0z 0.04 0.06 008 0.1 012 0.18
77 a.1 5 0.14
0.08} 0.12
0.06F oal
oo " ] (d)
(c) critically damped: oosl
o2 overdamped
k=9 d,=79 aceh .
, : critically damped
0.04r
-0.02
-Oﬂlr Q.02
_o'-ogOZ o 002 0.04 0.08 O.E)E 0.1 012 0.14 o 5 10 15
3 t

Fig. 4. Examples of the basic tvpes of motion of the unforced, damped linear oscillator corresponding

to (a) D > 0 (underdamped), (b) D < 0 (overdamped), (c) D = 0 critically damped, and (d) com-

parison between the critically damped and overdamped solutions in (b) and (c). The critically
damped solution decays faster than the overdamped solution.



Vibration damping 413

a purely exponentially decaying part due to the eigenvalue 4,. In the case that D = 0, A has
only two distinct eigenvalues, /,, 4, and only two linearly independent eigenvectors v,, v,.
In this case, the matrix A can not be diagonalized but it does have a Jordan form. This can
be seen through a transformation of coordinates affected by a matrix M whose first two
columns are eigenvectors v, and v, of A and whose third column is a generalized eigenvector
v,, 1.e., a solution of

(A= 72Dy, = 0 (51)
for which

(A—7,w, #0. (52)
Such a generalized eigenvector has the form

1
—k+A3(Q24, +K)
vo= | 342+ 1420, | . (53)
234201 = @) A, + 1420,
303420, + 1420,

Now, define

M= v, v, v, | (54)

and observe that by introducing the new coordinates %(7) = (&, 7, 0)(t) according to

1 (1) = M¥%(7) (55)
we obtain
dy(z)
dT - JX(T)~ (56)
where
/v 0 0
J=M'AM=|0 i, 1| (57
0 0 4
Clearly &(1) will have the form
&r) = e, (58)

and is decoupled from the solutions for the other two components #(t) and (). For 7(t)
and (t) we have

(1) = {oe™" (o +{o7) (59)

and
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o) = Gy, (60)

respectively. This general solution corresponds to that for a critically damped oscillator as
illustrated in Fig. 4. Thus, since the time dependence of the original variables ¢, , and ¢ is
given as a linear combination of the solutions for &, 7 and { according to (55). it may be
concluded that the motion is critically damped due to the eigenvalue 4, superposed on an
exponentially decaying non-oscillating part corresponding to the eigenvalue 4,.

3.3. Forced linear oscillations : the magnification factor

When the external forcing amplitude p is not zero, the general solution of (21) will be
the sum of a homogeneous solution, according to the previous section, and a particular
solution due to the forcing. Such a particular solution x*(t) = (&*, #*, {*)(1r) may be rep-
resented in the form

() = E(T)J E - '(s)p(s) ds, (61)
where
0
p(t) = | pcoswr |, (62)
0

and where Z(°) is a fundamental matrix function whose columns consist of linearly inde-
pendent solutions of the unforced system (32). In the case that D # 0 it follows that

E(s) =S 'e™ (63)
and when D = 0 we find
E(s) = M, (64)

where S, A, M and J are given by (44), (47), (54) and (57), respectively. and where

e 0 0
el =0 e set| (65)
0 0 e

Because of possible resonance behavior, it is of particular interest to determine how
the amplitude of the motion £*(t) depends on the forcing frequency o for a given forcing
amplitude p. To see this, we obtain from (61) to (65) that in both cases D # 0 and D =: 0
the solution £*(t) may be written in the form

3

i

1)y = —p ) ———(Asinwt+wcos wr), (66)
i=t Ay @
wheret
Jat s
Ly=———""7—"—,
l (fy —A) (A —43)
fs+ A
LZ = - /.Bd'—,,%,\/* s
(A3 =) (A2 —4))
/o + Az )
L, GG (67)

T =) (=)

+ The apparent singularities in L, in the case D = 0 when 2, = /4, are spurious. The summation occurring in
(66) as well as (69) and (70) are, in fact, finite.
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w
Fig. 5. The magnification tactor 2 vs w for various values of x and ®, = 1.
Alternatively, we have
¢¥(1) = pasin(wt— @), (68)
where
LA N (8 La \ \
x = f (Z Praal Bl B Moeaet (69)
i=1 47 i=1 A7+
and

3 Lrljﬁ ;’ 3 Ll,
¢ = arctan ((Z — ’> { (Z - @ )) (70)
Ni=t A Fw /] =1 A ws

In Figs 5 and 6 we take @, = | and @, = 2, respectively, and show the magnification factor
o = amplitude [E*(z)]/p as a function of w for various values of k. Note that as x increases
the curves resemble more and more those that would be obtained for the case of classical
viscous damping. Figures 7 and § show, correspondingly, the phase lag ¢ of £*(1) relative
to the phase of the forcing function p cos wt. Again, as « increases the curves resemble those
that would be obtained for viscous damping. In Section 4 we show that classical viscous
damping indeed characterizes the limiting behavior corresponding to history type damping
as x becomes large.

History type damping has the very distinct feature of leading to two resonance
frequencies. One of these is clearly the natural frequency @ = | of the undamped unforced
oscillator. This is the resonance frequency for large x when the memory of the material is
short, in which case it is not surprising that the damping effect may be approximated by
the action of a classical viscous damper. It is interesting to observe from Figure 5 and 6
that the resonance frequency can be significantly shifted by changing the parameter . All



416 R. Fosdick et al.

0 1 1 1 1 L i i 1 H
0 0.5 1 15 2 25 3 3.5 4 4.5 5
w
Fig. 6. The magnification factor a vs w for various values of k and @, = 2.
¢ 3 5 T T T T T T T T T
0 L 1 1 1 1 i 1 i 1
0 0.5 1 1.5 2 2.5 3 3.5 4 45 5
w

Fig. 7. The phase shift ¢ vs w for various values of x and ®, = 1.

other things fixed, this amounts to changing the relaxation time v of the material, and
suggests the use of the device as an active component in a system that requires resonance
modulation.

3.4. Forced linear oscillations : the transmission ratio
In a vibrating system such as that studied here, the amplitude p of the applied force
(scaled) pcoswt is generally not the amplitude of the force that is transmitted to the fixed
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1 1

1 1 i 1 1

0.5 1 1.5 2 25 3 3.5 4 45 5

Fig. 8. The phase shift ¢ vs « for various values of x and @, = 2.

foundation. The latter force (scaled according to (21)) is given by {*(1) — ®,{*(¢), and the
transmission ratio, f = amplitude [£*(1) — D {*(1)]/p, is an important parameter in the study
of vibration isolation (see, e.g., Steidel (1989)).

To illustrate this, consider the case D # 0 of non-critical damping (D = 0 can be
handled similarly). In (66) we have recorded £*(7), and using (61)—(65) it follows that

3 2

o ST
O,(*(1) = ~p Y L———(4sinwt+wcos wr), (71

2 >
i=1

where L,, L, and L, are as defined in (67). Thus, we show in Figs 9 and 10 the transmission
ratio for the two choices @, = 1 and @, = 2, respectively, and for the various choices of «.
Note that for certain combinations of x and ®,, the transmitted force is smaller than the
amplitude of the forcing for all frequencies w < ~ 1.4. This is in contrast to the case of an
oscillator with classical viscous damping where for all frequencies below a certain level the
transmission ratio f§ > 1 regardless of the value of the viscosity (see, e.g., Steidel (1989)).
Notice also, by comparing Figs 5 and 6, that for a given value of x an increase in @, will
lead to a decrease in transmissibility for all values of w.

An important distinction between classical viscous damping and the present type of
history damping is that for the latter, vibration isolation may be obtained, (i.e., f < 1) for
forcing frequencies that are less than the natural frequency of the unforced, undamped
oscillator. As is well known, for linear oscillators with viscous damping f < 1 is only
possible when the forcing frequency is greater than (/2 times the natural frequency. This
distinct feature can be used in the design of an adaptive vibration damper where the
transmissibility can be controlled by adjusting the material parameters.

4. DAMPING EFFECTS IN THE LIMITS OF SHORT AND LONG MEMORY

The damping effects of short and long memory correspond to the respective cases of
when the natural time constant y satisfies either y « 1 or 7 >» 1. Because of (35), these cases
correspond, respectively, to k » 1 and k « 1. The parameter k = 1/yw, enters the dynamical
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Fig. 9. The transmission ratio f vs w for various values of k and @, = 1.
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Fig. 10. The transmission ratio f vs  for various values of x and ®, = 2.

equation (21) only through the third equation, and for our purposes, here, we shall eliminate
the first equation and write this system in the form

1) = = &)+ D {(7) +pcos wr,
(o) = —xkl(1)—2¢(0), (712)
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where the superposed *’”" denotes differentiation with respect to 7. Equivalently, we write
(72), as

T

() = {(0)e 2 J e " (1—5) ds. (73)

0

It follows from integrations by parts that

T

2 2
() =L ™ = (D +— [6’_"6’(0)+J
K K

0

e e (t—9) ds]. (74)

It also follows from a different integration by parts of (73) and substitution into (72),, that

T

(1) = —kl(0)e " =28 (1) + 2Ké(T) — 2K l:e' “g“(())—%—x[

0

e ME(T—y) ds]. (75)

Thus, for short memory when x > 1 we see from (74) that

N

(1) 40 (é ) (76)

2
K K_/

@) = —

and in this case the system (72) may be replaced by the single equation

. 20, . .
(M) + =< (M +Ln) = peosor, (77)

which is characteristic of a classical spring-viscous damper dynamical system with a small
viscosity, u = 2®,/x. When p =0 (i.e., k = cc) the natural frequency equals |, which
corresponds to the first natural frequency that is shown in Figs 5 and 6.

For long memory when x « 1 we see from (75) that

{'(1) = —k8(0) =28 (1) + 2K((1) — £(0)) + O(x?). (78)

Clearly, for the limiting situation x = 0 we have {(1) = {(0) —2(&(r) — £(0)), and the system
(72) may be replaced by

E(T) 4+ (1 4204)E(1) = Dy ({(0) 4+ 2£(0)) + p cos wr, (79

which is characteristic of a classical undamped linear oscillator with natural frequency
equal to \/1 +2®,. This corresponds to the second natural frequency that is shown in Figs
5and 6.

5. CLOSING REMARKS--COMPARISON TO VISCOUS DAMPING

Linear oscillators that are damped through the use of materials with memory exhibit
several characteristics that are qualitatively different from those of oscillators with classical
viscous damping. These characteristics may have important technological applications. A
striking difference is seen in the respective magnification factors (cf. Figs 5 and 6) of the
two types of damping. For history type damping, special combinations of the two material
parameters, which corresponds to large relaxation times, will lead to a new resonance
frequency that is not present for oscillators with classical viscous damping.

The transmission ratio (cf. Figs 9 and 10) for the oscillator and history type damping
exhibits the same resonance phenomena as the magnification factor. In addition. it is seen
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that the transmission ratio may be less than 1, i.e., it is possible to have vibration isolation
for forcing frequencies both below and above the natural frequency of the unforced oscil-
lator. This should be compared to the behavior of linear oscillators with classical viscous
damping where the transmission ratio is less than 1 only for forcing frequencies sufficiently
greater than the natural frequency of the oscillator. In fact, if w, denotes the natural
frequency in this case, the forcing frequency must be greater than V’"Qw,, for effective
vibration isolation.

For the case of the material with memory, it is possible that the governing parameters
of the damping, i.e., the relaxation time y and the relaxation modulus @, could be controlled
by the temperature or electric field (for electro-rheologically active materials). In general,
then, this device has potential as an active component in vibration control.
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